Factors in preference for noise reduction processing

Tobias Neher

Medizinische Physik and Cluster of Excellence “Hearing4all”, Oldenburg University

01.06.17, Hearing Aid Developers Forum, Oldenburg
Relating hearing loss and executive functions to hearing aid users’ preference for, and speech recognition with, different combinations of binaural noise reduction and microphone directionality

Tobias Neher*
Medical Physics and Cluster of Excellence Hearing4all, Oldenburg University, Germany

Directional Processing and Noise Reduction in Hearing Aids: Individual and Situational Influences on Preferred Setting
DOI: 10.3768/jaaa.15062

Tobias Neher*‡
Kirsten C. Wagener‡
Rosa-Linde Fischer}$

Investigating Differences in Preferred Noise Reduction Strength Among Hearing Aid Users

Tobias Neher¹,² and Kirsten C. Wagener²,³
NR processing ‘dilemma’
- Trade-off: Noise attenuation vs. speech distortion (e.g. Kates, 2008)
- HA users seem to respond differently to these conflicting effects (Marzinzik, 2000; Houben et al, 2012)
- Some HA users prefer strong NR despite poorer speech recognition

Aims of current study
- To investigate the ability of a number of psychoacoustic, audiological, and self-report measures aimed at indexing noise tolerance, distortion sensitivity, and other ‘sound personality’ traits to predict NR preference
- To investigate the long-term stability and signal-to-noise ratio (SNR) dependence of NR preference
Participants

- Chosen to have clear preferences or clear dislikes for strong NR (‘NR lovers’ vs. ‘NR haters’), as determined ~1 year earlier
 - Previously, total of 60 elderly experienced HA users tested
 - Pairwise comparisons re. overall preference for ‘inactive’, ‘moderate’, and ‘strong’ NR at input SNRs of 0 and +4 dB
 - Binaural coherence-based NR (Neher, Front Neurosci 2014)
 - Single-microphone, modulation-based NR (Neher et al, J Am Acad Audiol 2016)

- For the current study…
 - Calculation of aggregate preference scores based on both datasets
 - Selection of 27 participants, including 23 ‘unambiguous’ ones as well as 4 ‘borderline’ ones who tended to converge at moderate NR
Participants ctd.

- Bilateral, symmetrical, sensorineural hearing losses
- At least 1.5 yrs of experience with bilateral HAs
- No psychiatric disorders (e.g. depression)
- Age-appropriate to mildly impaired cognition as per “DemTect” (Kalbe et al, 2004)
- Main group characteristics (means and ranges):

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Age (yrs)</th>
<th>PTA4 (dB HL)</th>
<th>Read. span (%-corr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR lovers</td>
<td>14</td>
<td>70 (64-78)</td>
<td>47 (34-58)</td>
<td>40 (22-57)</td>
</tr>
<tr>
<td>NR haters</td>
<td>13</td>
<td>73 (61-81)</td>
<td>44 (29-67)</td>
<td>39 (20-56)</td>
</tr>
</tbody>
</table>

All $p > 0.05$
HA signal processing

- Real-time simulation of bilateral HAs
 - Implemented on Master Hearing Aid platform (Grimm et al, 2006), controllable via test software

- Signal processing (as before)
 - Binaural coherence-based NR (Grimm et al, 2009), individual linear amplification (NAL-RP), headphone equalisation

- NR strength
 - Controlled by varying algorithmic parameter α from 0 (= inactive) over 0.75 (= moderate) to 2 (= strong)

Estimated binaural coherence NR gain (dB)

- $\alpha = 0$
- $\alpha = 0.75$
- $\alpha = 2$

Estimated binaural coherence

NR gain (dB)

0 0.2 0.4 0.6 0.8 1
-30 -25 -20 -15 -10 -5 0

01.06.17 Neher @ HADF
Noise attenuation vs. speech distortion at +4 dB SNR

- $\alpha = 0$
- $\alpha = 0.75$
- $\alpha = 2$

Waveforms of S and N

Spectrograms of S+N

<table>
<thead>
<tr>
<th>ΔAI-SNR</th>
<th>HASQI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6 dB</td>
<td>0.86</td>
</tr>
<tr>
<td>2.8 dB</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Speech stimuli & measurements

- **Speech stimuli (virtual acoustics)**
 - Recordings made in reverberant cafeteria with two behind-the-ear HA dummies on head-and-torso simulator (Kayser et al, 2009)
 - S: Sentences from Oldenburg sentence test convolved with head-related impulse responses of nearby, frontal source
 - N: Extracts from recording of fully occupied cafeteria

- **Measurements**
 - Self-adjusted NR strength
 - Task: “Adjust α to preferred level for prolonged listening”
 - Input SNRs: [0, +4] dB; 3 test runs each
Acceptable noise level (ANL) \cite{Nabelek1991}:

- Level of N adjusted so (i) S no longer understandable, (ii) S very easily understandable, and (iii) N just tolerable while listening to S; ANL = 65 − L_{N(iii)} dB
- NR: {inactive, moderate, strong}; 3 test runs each

Sensitivity to speech distortions \cite{Brons2014}:

- Detection thresholds for S distortions caused by NR processing
- Task: “Which of two sounds was different from a reference sound?” (3I-2AFC)
- Ref.: S unprocessed; Target: S processed with NR gains for S+N; Levels equalised and roved; 2 test runs
Measurements ctd.

- Self-reported ‘sound personality’ (Meis et al, 2016)
 - 46-item inventory for predicting usage of, and preference for, HA technology
 - F1: Disturbance by noise
 - F2: Importance of sound quality
 - F3: Noise sensitivity
 - F4: Avoidance of unpredictable sounds
 - F5: Openness towards loud/new sounds
 - F6: Preference for warm sounds
 - F7: Details in environmental sounds/music
Results
- NR haters prefer weaker NR than NR lovers ($p < 0.01$)
- Both groups prefer stronger NR at higher SNR ($p < 0.01$)
NR lovers tend to be more sensitive to noise (→ inactive NR, \(p = 0.058 \))

For NR lovers, noise tolerance improves by 3.7 and 4.5 dB with moderate and strong NR, respectively (both \(p < 0.001 \))
NR lovers tend to be less sensitive to S distortions than NR haters ($p = 0.06$)

α at threshold: 0.31 vs. 0.44
No differences among groups (all $p > 0.05$)

Group differences most apparent for…

- F4: Avoid unpredictable sounds ($p = 0.065$)
- F6: Prefer warm sounds ($p = 0.21$)
- F3: Noise sensitivity ($p = 0.24$)
Correlations among measures

- Aggregate pref. scores and self-adjusted α-values
 - $r = 0.64$, $p < 0.001$

- Detect. thresholds for S distortions, ANLs, self-reported traits, and self-adjusted α-values
 - All $|r| < 0.3$, $p > 0.1$
Summary

- Preferred NR strength is a very individual trait
- Preferred NR strength appears generally stable over time, at least for experienced HA users
 - NR haters show greater tendency to change groups than NR lovers
- Preferred NR strength increases with input SNR, irrespective of group membership
- Acceptable noise levels and detection thresholds for speech distortions may be able to predict group membership, but further research is needed
Thanks for listening!
tobias.neher@uol.de
Literature

