TOLERABLE DELAY FOR SPEECH PROCESSING: EFFECTS OF HEARING ABILITY AND ACCLIMATISATION

Tobias Goehring, PhD

Previous affiliation (this project):
Institute of Sound and Vibration Research
University of Southampton
Southampton, UK

Now at:
MRC Cognition and Brain Sciences Unit
University of Cambridge
Cambridge, UK

HADF, Oldenburg, Germany
1 June 2017
Introduction

Own voice

External voice

Cochlea picture: http://storage3d.com/storage/2006.10/5770ca614015fd13ae99fc999dff667e.jpg

Bone conduction

Air conduction

Processed signal

DSP

Level-ratio

Delay

Direct signal

Processed signal

DSP

Level-ratio

Cochlea
Perceptual effects of delay on speech communication:

- Audio-visual synchronicity (> 80 ms) [1]
- Auditory-proprioceptive feedback (> 80 ms) [2,3]
- Distinct echo perception (> 50 ms) [4]
- Changes to speech production rate (from 43 ms) [3]
- Timbre alterations due to comb-filter effect (< 50 ms)

Literature suggests upper limit of delay for hearing devices: 10 ms

- Do hearing-impaired people tolerate longer output delays than normal-hearing people when tested on the same setup?
- Do experienced users of hearing aids tolerate longer delays?
- Does long-term acclimatisation to delay increase tolerance?
Overview

- Study 1: Effects of hearing ability and experience with HA
- Study 2: Effects of long-term acclimatisation
Methods: Study 1

- **Participants:**
 - 20 NH: Age 18-45 y, 8 fem.
 - 20 HL: Age 45-81 y, 8 fem.
 - 10 new, 10 experienced with HA

- **Setup:**
 - Real-time processing (DSP: Linear mixer and delay, at fs=48 kHz)
 - Headphones (closed, circumaural, at 65 dB(A))

- **Fitting gain:**
 - Half-gain rule based on hearing thresholds (HL group)

- **Conditions:**
 - 5 delay: [10…50] ms and 3 voice: own and external (2)

Own voice

(OwnV)

External voice

(Ext0dB, Ext20dB)
Results: comparison NH vs. HL

Subjective rating of annoyance (7-point scale)
1 min. listening/reading per stimulus condition @ 65 dB(A)

Effect of hearing ability:

Significant effect of hearing ability (NH/HL). [F(1,38)=4.619, p=0.038]
Results: HI group (PTA)

Split 20 HL in three subgroups based on PTA (500, 1000, 2000 Hz):

LOW < 35 dB HL < MID < 50 dB HL < HIGH, n=5/8/7

No significant effect of subgroup (LOW/MID/HIGH).

Significant correlation between average slopes of ratings and PTA within HL group (r=-0.51, p=0.022).
Results: HI group (experience)

Split HI group in two subgroups based on experience with hearing aids:

NEW and **EXP**, n=10/10,

No significant effect of experience (NEW/EXP).

Similar ages (67.1 vs. 66.9 years),
but different PTA for NEW and EXP (37.4 vs. 50.2 dB HL).
Overview

- Study 1: Effects of hearing ability and experience with HA
- Study 2: Effects of long-term acclimatisation
Methods: Study 2

- **Participants:** 8 NH
 Age: 20.9 y, 4 fem., NH thresholds

- **Setup:**
 Real-time processing
 iPhone (4S, 5) with earplugs
 (DSP: delay, limiter, at fs=48 kHz)
 (in-ear, int. microphone, at 65 dB(A))

- **Conditions:**
 4 delay: [10,20,30,40] ms and 3 level-ratio: [0,10,20] dB

- **iPhone Ear App:**
 2 delay settings:
 Group 1: 20 ms
 Group 2: 40 ms

 5 days of use (1 week)

PRE 2 3 4 **POST**

App made by Dr. Nick Clark
(Mimi Hearing Technologies)
Results: Comparison of PRE / POST

Contourplots for ALL / PRE / POST test and both groups:
Yellow – higher annoyance, Green – lower annoyance

Group 1 = 20 ms
Group 2 = 40 ms
Compare **Group1** and **Group 2**, n=4/4, averages across level-ratios:

Significant difference between groups for post test \([F(1,6)=7.665, p=0.032] \).

Some acclimatisation for **Group1**, but also bit lower tolerance for **Group2** …
Conclusion

- Hearing loss increased tolerance of delay over NH (average ratings)

- Lower sensitivity to changes in delay with stronger HL (average slopes)

- Experience with hearing aids showed some trends but no significant effect of tolerance and potential confound with HL

- Long-term acclimatisation increased tolerance of delay for NH (Ear App)

- Results extend findings of previous study (Stone and Moore, 2005) to external voice conditions and linear processing (no WDRC)

- Limitations of study: linear signal processing, only speech stimuli (e.g. no music) and presentation via closed headphones / earplugs
 - most likely different to perception with commercial hearing aids!!
Future work and ideas

- Long-term study with HI listeners and actual HA devices?
- Effect of experience with matched PTA/Age between groups?

- Algorithms with potential benefits from increased delay:
 - Noise reduction based on machine learning (GMM, DNN)
 - Decorrelation for feedback cancellation
 - Wireless streaming of audio (binaural, HA+CI, smartphones…)

- More energy-efficient processing with larger time window?
Acknowledgements

The work leading to this deliverable and the results described therein has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement nº PITN-GA-2012-317521

Stefan Bleeck
Jessica Monaghan
Josie Chapman
Sakeena Kanji
Thank you!

Contact:

goehring.tobias@gmail.com
appendix
Results: Comparison of PRE/POST

Results for **PRE** / **POST** test and both groups:

Group 1
(20 ms)

Group 2
(40 ms)